EVOH Barrier Resins and Film

www.evalevoh.com
More function, less waste

Kuraray Co., Ltd. is the world leader in the production and development of EVOH (ethylene vinyl alcohol copolymer) barrier plastic raw materials. It is available worldwide under the name EVAL™, either in pellet form for coextrusion and coinjection, or as film for lamination.

1mm of EVAL™ has the same gas barrier as a 10 metre thick wall of LDPE. With such performance, very thin layers of EVAL™ add valuable barrier function to efficient multilayer structures. This barrier function works in both directions, keeping harmful oxygen and contamination away from sensitive products, while locking aroma and value inside.

Multilayer structures provide functional protection with a minimum amount of material. Polyolefins provide cost-effective structure and humidity barrier. PA can provide toughness and assist forming. Tie layers provide structural integrity. EVAL™ provides the necessary gas and migration barrier function to the entire structure.

TYPICAL MULTILAYER STRUCTURE WITH EVAL™

- Outer layer
- Regrind
- Tie
- EVAL™ EVOH
- Inner layer

OXYGEN TRANSMISSION RATE OF VARIOUS POLYMERS VERSUS RELATIVE HUMIDITY AT 20°C

- ISO14663-2 Annex C standard (65% RH)
- EVAL™ E type (44 mol% ethylene)
- EVAL™ F type (32 mol% ethylene)
Making structures more efficient, attractive and safe

The key is to let each component of the structure do what it does best, in an appropriate layer thickness. Different materials combined effectively may actually decrease the total amount of packaging materials required.

EVAL™ provides the functional gas, aroma and grease barrier in food, medical, pharmaceutical and cosmetic packaging, and as a gas and solvent barrier in industrial, construction, agricultural and automotive fuel system applications. All-plastic structures with EVAL™ offer a safe, light weight, transparent and unbreakable alternative to glass and metal. Thin layers of EVAL™ add reliable barrier to renewable materials like paper-board and PLA. At end of life, structures containing EVAL™ can be recycled, or provide safe energy recovery without toxic emissions or metal residue.

- **METAL CAN**
- **PLASTIC CUP/LID**
 - LIGHT WEIGHT
 - TRANSPARENT
 - MICROWAVEABLE
- **GLASS BOTTLE**
- **EFFICIENT BAG-IN-BOX**
 - UNBREAKABLE
 - TRANSPORT MORE GOODS
 - LESS PACKAGING
- **GLASS JAR**
- **ALL-PLASTIC BARRIER BOTTLE**
 - LIGHT WEIGHT
 - SQUEEZABLE
 - USE WITH METAL DETECTORS
- **STEEL FUEL TANK**
- **PLASTIC FUEL SYSTEM**
 - LIGHT WEIGHT
 - FREEDOM OF DESIGN
 - SAFETY IN USE
Reliable and safe protective function in packaging

High gas barrier properties
Extended freshness, less waste.
Without an effective gas barrier, oxygen may penetrate packaging and spoil the contents. EVAL™ keeps oxygen out and safeguards quality, extending shelf life and avoiding waste. This cost-saving function is commonly added to food, medical, pharmaceutical, cosmetic, agricultural and industrial packaging applications.

Migration barrier
Improving food safety.
EVAL™ provides excellent resistance to organic solvents, protecting food against the migration of contamination like MOSH/MOAH mineral oils that can compromise food safety. EVAL™ also resists permeation of hydrocarbons and grease, maintaining packaging appearance. In addition to protecting food, this property also protects the environment, locking chemical substances inside safe and convenient plastic packaging.

Aroma barrier, no flavour scalping
While keeping oxygen and other gases out, EVAL™ also effectively blocks odours, protecting product integrity. EVAL™ locks volatile fragrance and ingredients inside packaging without absorbing them, and preserves aroma until it can be enjoyed by the consumer.

Transparency
A clear and reliable alternative to Al foil
All-plastic EVAL™ barrier layers have excellent flex crack and pinhole resistance, even when flexed, folded and shaken during processing and distribution. EVAL™ offers a reliable barrier alternative to Al foil, with the addition of excellent transparency and safe and low-impact energy recovery at end of life.

Process efficiency
Plastic barrier structures with EVAL™ can be designed for aseptic filling, reducing energy use during processing. Light weight structures with EVAL™ allow transporting more goods instead of unnecessarily heavy packaging. Inexpensive but functional packaging design helps bring quality products to new markets.

Food contact compliance
EVAL™ has passed the specification/standard test of Official Notice No.370 (1959) from Japan’s Ministry of Health and Welfare. EVAL™ is in compliance with the EC Directive on plastic materials intended to come into contact with food. EVAL™ has been approved for use in direct food contact, indirect or multilayer food contact and for retort applications as outlined under the Food and Drug Administration regulations in the USA.
Properties that create value for industry

Hydrophilic, anti-static and glossy appearance
EVAL™ is a hydrophilic polar material with anti-static properties and a glossy appearance when used as an outside layer. In addition to packaging, its unusual mix of properties leads to use as a technical plastic for industrial, electronic and medical components.

Avoiding energy waste and reducing emissions

Extended service life
EVAL™ adds barrier function to structures that were previously not possible with plastics. Barrier plastic pipes for under-floor heating are easy to install and help avoid corrosion, extending service life.

Energy efficiency
EVAL™ can replace Al foil in vacuum insulation panels, maintaining the vacuum and efficiency and generating savings. A thin layer of EVAL™ can maintain the insulation properties of Polyurethane foam, used in preinsulated heating and cooling pipes.

Fuel vapour barrier
Light weight barrier plastic tanks and lines improve the performance and safety of automotive fuel systems. EVOH is the only conventional plastic that meets strict international emission standards.

Solvent resistance
Safe protection against permeation of solvents and agricultural chemicals EVAL™ shows excellent physical resistance to solvents, and barrier against their permeation into the environment. Because of its resistance to absorption and swelling, EVAL™ is typically used as the inner contact layer in UN-approved chemical bottles. A safe way to transport chemical concentrates.

Less waste, improved safety for Agriculture
EVAL™ provides the barrier function in TIF™ (Totally Impermeable Film) mulch films. Agricultural chemicals stay where they are needed, reducing emissions and improving safety for workers and nearby residents. Barrier silage and land silo films protect feed and produce until they can be used or shipped to market. UN regulation compliant plastic chemical bottles block emissions from chemical concentrates.
Types of EVAL™

EVAL™ M type
has the lowest ethylene content available, and provides the highest barrier for automotive and flexible applications.

EVAL™ L type
has a very low ethylene content and is suitable as an ultra-high barrier in flexible, bottle and sheet applications.

EVAL™ F type
offers superior barrier performance with long-term process stability, and is widely used as the standard grade for flexible, automotive, bottle and tube applications. Specific versions exist for coating and pipe applications.

EVAL™ C type
can be used for high-speed co-extrusion coating and cast flexible applications.

EVAL™ H type
combines high-barrier properties and long-term run stability and thermoformability. The higher ethylene content allows easier processing and longer running times on older co-extrusion equipment, especially for blown flexible structures.

EVAL™ E type
has a higher ethylene content that allows for greater flexibility and even easier processing.

EVAL™ G type
has the highest ethylene content, making it the best candidate among standard EVAL™ types for stretch and shrink film applications.
EVAL™ resin grades

1. **Standard grades**

<table>
<thead>
<tr>
<th>Grade</th>
<th>Et. Cont. (mol%)</th>
<th>Density*1 (g/cm³)</th>
<th>MFR*2 (g/10min)</th>
<th>Tm (°C)</th>
<th>Tg*3 (°C)</th>
<th>OTR*4 (cm³.20µm/m².day.atm)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>L171B</td>
<td>27 1.21</td>
<td>4.0*5</td>
<td>190</td>
<td>63</td>
<td>0.1</td>
<td>high-barrier</td>
<td></td>
</tr>
<tr>
<td>F101B</td>
<td>32 1.19</td>
<td>1.6 183</td>
<td>60</td>
<td>0.3</td>
<td>fuel tank, bottle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F171B</td>
<td>32 1.19</td>
<td>1.6 183</td>
<td>60</td>
<td>0.3</td>
<td>bottle, sheet, film, tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H171B</td>
<td>38 1.17</td>
<td>1.7 172</td>
<td>56</td>
<td>0.7</td>
<td>bottle, sheet, film, tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E105B</td>
<td>44 1.14</td>
<td>5.5 165</td>
<td>53</td>
<td>1.9</td>
<td>sheet, film, tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G156B</td>
<td>48 1.12</td>
<td>6.4 157</td>
<td>50</td>
<td>3.7</td>
<td>oriented shrink film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Grades for specific processing conditions**

<table>
<thead>
<tr>
<th>Grade</th>
<th>Et. Cont. (mol%)</th>
<th>Density*1 (g/cm³)</th>
<th>MFR*2 (g/10min)</th>
<th>Tm (°C)</th>
<th>Tg*3 (°C)</th>
<th>OTR*4 (cm³.20µm/m².day.atm)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>L104B</td>
<td>27 1.21</td>
<td>8.0*8</td>
<td>190</td>
<td>63</td>
<td>0.1</td>
<td>high MFR L-type</td>
<td></td>
</tr>
<tr>
<td>F104B</td>
<td>32 1.19</td>
<td>4.4 183</td>
<td>60</td>
<td>0.3</td>
<td>high MFR F-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C109B</td>
<td>35 1.18</td>
<td>8.5 177</td>
<td>58</td>
<td>0.5</td>
<td>extrusion coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E171B</td>
<td>44 1.14</td>
<td>1.7 165</td>
<td>53</td>
<td>1.9</td>
<td>low MFR E-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E173B</td>
<td>44 1.14</td>
<td>2.5 165</td>
<td>53</td>
<td>1.9</td>
<td>medium MFR E-type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Special grades**

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Comparison to standard grades</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoforming grade</td>
<td>Improved EVAL™ layer distribution during deep thermoforming</td>
<td>SP series, J171B</td>
</tr>
<tr>
<td>Soft grade</td>
<td>Improved flex-crack resistance with similar barrier</td>
<td>FS201B</td>
</tr>
<tr>
<td>High impact strength grade</td>
<td>Improved impact strength</td>
<td>LA170B</td>
</tr>
<tr>
<td>Fuel tank grade</td>
<td>Ultra high barrier properties</td>
<td>M100B</td>
</tr>
<tr>
<td>Pipe grade</td>
<td>Provides extended service life at high temperature</td>
<td>FP101B, EP105B</td>
</tr>
<tr>
<td>Retort grade</td>
<td>Retort flexible grade. Improved retort performance for thin transparent structures</td>
<td>FR101B, LR171B</td>
</tr>
</tbody>
</table>

4. **Processing agents for EVAL™ resin**

We also offer the following processing agents, useful for specific EVAL™ resin applications and processing methods.

- Recycling agent
- Purging agent

EVAL™ film grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Type</th>
<th>Thickness (µm)</th>
<th>Ethylene Content (mol%)</th>
<th>Density (g/cm³)</th>
<th>OTR (cm³/m².day.atm) 20°C 65%RH ISO 14663-2</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF-XL</td>
<td>Biaxially oriented</td>
<td>12</td>
<td>32</td>
<td>1.20</td>
<td>0.4</td>
<td>high barrier</td>
</tr>
<tr>
<td>EF-F</td>
<td>Non-oriented</td>
<td>12</td>
<td>32</td>
<td>1.20</td>
<td>0.6</td>
<td>high barrier, deep draw</td>
</tr>
<tr>
<td>EF-E</td>
<td>Non-oriented</td>
<td>30</td>
<td>44</td>
<td>1.14</td>
<td>1.0</td>
<td>sealable, deep draw</td>
</tr>
<tr>
<td>EF-CR</td>
<td>Non-oriented</td>
<td>15</td>
<td>32</td>
<td>1.18</td>
<td>1.5</td>
<td>boil, retortable, deep draw</td>
</tr>
<tr>
<td>VM-XL</td>
<td>Biaxially oriented, Aluminium metalized.</td>
<td>15</td>
<td>32</td>
<td>1.20</td>
<td><0.05</td>
<td>ultra-high barrier</td>
</tr>
<tr>
<td>HF-ME</td>
<td>Non-oriented</td>
<td>12</td>
<td>-</td>
<td>1.10</td>
<td>-</td>
<td>matt for wallpaper use</td>
</tr>
</tbody>
</table>
Gas barrier properties of EVAL™

EVAL™ gas barrier performance is affected by humidity and temperature, but even in extreme conditions it offers exceptional barrier properties.

What is important is the equilibrium relative humidity of the EVAL™ layer itself. EVOH is a hydrophilic polymer. But as an EVAL™ layer loses any humidity it may have absorbed, the barrier performance improves.

EVAL™ gas barrier is higher than that of any conventional polymer. Barrier performance is directly related to layer thickness.

Compared to other plastics, EVAL™ can usually offer higher barrier performance even while reducing the amount of material used.

EVAL™ LAYER THICKNESS AND OXYGEN TRANSMISSION RATE

![Graph showing OTR (cm³/m²/day/ atm) at 20°C, 65%RH](image)

EVAL™ gas barrier performance is affected by humidity and temperature, but even in extreme conditions it offers exceptional barrier properties.

What is important is the equilibrium relative humidity of the EVAL™ layer itself. EVOH is a hydrophilic polymer. But as an EVAL™ layer loses any humidity it may have absorbed, the barrier performance improves.

EVAL™ gas barrier is higher than that of any conventional polymer. Barrier performance is directly related to layer thickness.

Compared to other plastics, EVAL™ can usually offer higher barrier performance even while reducing the amount of material used.

TRANSMISSION RATES OF OTHER GASES AT 0% RH

<table>
<thead>
<tr>
<th>Film type</th>
<th>H₂ (20°C)</th>
<th>N₂ (25°C)</th>
<th>CO₂ (25°C)</th>
<th>He (25°C)</th>
<th>Ar (35°C)</th>
<th>Ar (50°C)</th>
<th>Kr (35°C)</th>
<th>Kr (50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F101B</td>
<td>30*</td>
<td>0.017</td>
<td>0.81</td>
<td>160</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>E105B</td>
<td>200</td>
<td>0.13</td>
<td>7.1</td>
<td>410</td>
<td>1.6</td>
<td>7.0</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>OPA</td>
<td>-</td>
<td>12</td>
<td>205</td>
<td>2,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>150</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>OPET</td>
<td>-</td>
<td>8</td>
<td>110</td>
<td>3,100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPP</td>
<td>10,000</td>
<td>730</td>
<td>9,100</td>
<td>-</td>
<td>8,100</td>
<td>28,000</td>
<td>6,900</td>
<td>23,000</td>
</tr>
<tr>
<td>LDPE</td>
<td>-</td>
<td>3,100</td>
<td>42,000</td>
<td>28,000</td>
<td>19,000</td>
<td>46,000</td>
<td>25,000</td>
<td>74,000</td>
</tr>
</tbody>
</table>

* Measuring conditions: 0%RH, cm³/20µm/m²/day/atm. *F171B

* Value for F171B
Resistance and barrier against solvents and other chemicals

RESISTANCE OF EVAL™ TO VARIOUS ORGANIC SOLVENTS

<table>
<thead>
<tr>
<th>Solvent</th>
<th>SP value (g/20µm².day.atm)</th>
<th>20°C, 1 month</th>
<th>20°C, 6 months</th>
<th>20°C, 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F101B</td>
<td>PA6</td>
<td>F101B</td>
</tr>
<tr>
<td>Xylene</td>
<td>8.8</td>
<td>0.20</td>
<td><0.04</td>
<td>0.8</td>
</tr>
<tr>
<td>Ethylacetate</td>
<td>9.1</td>
<td>0.21</td>
<td><0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Benzene</td>
<td>9.2</td>
<td>0.16</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Acetone</td>
<td>9.9</td>
<td>0.09</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Pyridine</td>
<td>10.7</td>
<td>0.5</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Ethanol</td>
<td>12.7</td>
<td>0.04</td>
<td>1.7</td>
<td>12.0</td>
</tr>
<tr>
<td>Salad oil</td>
<td>-</td>
<td>0.04</td>
<td>0.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Measurement conditions: swelling method. SP value of EVAL™ F = 19.0; the SP value of PA6 = 12.7.

For best results, the difference between the material and solvent SP values should be as large as possible.

EVAL™ barrier against solvent permeation

<table>
<thead>
<tr>
<th>Film type</th>
<th>Chloroform</th>
<th>Xylene</th>
<th>Methyl ethyl ketone</th>
<th>Kerosene</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVAL F</td>
<td>0.20</td>
<td><0.04</td>
<td>0.09</td>
<td><0.04</td>
</tr>
<tr>
<td>EVAL E</td>
<td>0.21</td>
<td><0.06</td>
<td>0.13</td>
<td><0.06</td>
</tr>
<tr>
<td>OPA</td>
<td>16.9</td>
<td>1.19</td>
<td>3.38</td>
<td>0.48</td>
</tr>
<tr>
<td>OPP</td>
<td>3740</td>
<td>350</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>LDPE</td>
<td>6900</td>
<td>813</td>
<td>185</td>
<td>190</td>
</tr>
</tbody>
</table>

EVAL™ resists flavour absorption

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Flavours</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavour absorption</td>
<td>ppm</td>
<td>d-Limonene</td>
<td>EF-E</td>
</tr>
<tr>
<td>(liquid)</td>
<td></td>
<td>n-Butyl acetate</td>
<td>LDPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethyl acetate</td>
<td>CPP</td>
</tr>
<tr>
<td></td>
<td>mg/g</td>
<td>1-Methol</td>
<td>EF-E</td>
</tr>
<tr>
<td>(gas)</td>
<td></td>
<td>Salicylic acid methyl</td>
<td>LDPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CPP</td>
</tr>
</tbody>
</table>

Adjusting structure design for optimal performance

Based on the application and typical conditions of use, it is possible to optimise barrier performance. The equilibrium relative humidity of the EVAL™ layer can be lowered by shifting its location or by carefully choosing the other materials in the structure.
Applications in Food Packaging

Flexible (blown, cast, lamination)

Extended freshness and protected value

- **Fresh meat shrink wrap**
 - PA/EVAL™/PA/tie/PE
 - Outside: inside

- **Sliced ham**
 - PET/tie/EVAL™/PA/tie/EVA
 - Outside: inside

- **MAP with long-lasting gas mix**
 - PET/PE/tie/EVAL™/tie/EVA
 - Outside: inside

Al foil-free for safety and reduced environmental impact

- **Ultra efficient bag-in-box liner**
 - PE/tie/EVAL™/tie/EVA
 - Outside: inside

- **Al foil-free aroma barrier**
 - PET/PE/tie/EVAL™/tie/PE
 - Outside: inside

- **Transparent barrier lid film**
 - PA/EVAL™ film/PP
 - Outside: inside

- **Affordable UHT milk pouch**
 - PE/tie/EVAL™/tie/PE
 - Outside: inside

- **Affordable soup powder sachet**
 - Paper/PE/tie/EVAL™/tie/PE
 - Outside: inside

- **Transparent packs for sensitive foods**
 - OPP/EVAL™ film/PE
 - Outside: inside
Rigid (tray, cup, bottle, tube)

Thermoforming to replace metal cans and trays

Baby food
PP/tie/EVAL™/tie/PP
outside inside

Pet food tray
PP/tie/EVAL™/tie/PP
outside inside

Deep draw beverage “can”
PS/tie/EVAL™/tie/PS
outside inside

Improving safety, shelf life without conservatives

Metal replacement, no sharp edges
PE/tie/EVAL™/tie/regrind/PE
outside inside

Shelf-stable dairy
PE/tie/EVAL™/tie/PE
outside inside

Freshness without conservatives
PE or PP/tie/EVAL™/tie/PE or PP
outside inside

High quality packaging, protecting valuable ingredients

Seamless coextruded tube
PE/tie/EVAL™/tie/PE
outside inside

Glossy, printable exterior layer
EVAL™/tie/PP
outside inside

Barrier guaranteed vitamin content
PE/tie/EVAL™/tie/PE
outside inside
Coating (paperboard, paper)

Adding barrier function to renewable materials

- Aroma barrier paper sachet
 Paper/PE/tie/EVAL™/tie/PE
 outside inside

- Migration barrier paper liner
 Paper/PE/tie/EVAL™/tie/PE
 outside inside

- Al-free carton for liquids
 PE/paper/PE/tie/EVAL™/tie/PE
 outside inside

New technologies that boost packaging shelf appeal

- Coinjected barrier can
 PP/EVAL™/PP/EVAL™
 outside inside

- Barrier in-mould label cup
 PE/tie/EVAL™/tie/PE/PE
 outside inside

- Ultra light tomato sauce pouch
 PET/PE/tie/EVAL™/tie/PE
 outside inside

Applications in Medical and Pharmaceutical

Ensuring product integrity and protection from contamination

- Sealable medicine sachet
 PET/AL/EVAL™ film
 outside inside

- Nutrition provided intact
 PE/tie/EVAL™/tie/PE
 outside inside

- Visibility and protection
 PET/PE/tie/EVAL™/tie/PE
 outside inside
Applications in Building and Construction and Fuel containment

Extended energy efficiency and service life

Underfloor heating pipe
EVAL™/tie/PEX
outside inside

VOC barrier construction membranes
PE/PE/tie/EVAL™/tie/PE/PE
outside inside

Preinsulated pipe
PE/tie/EVAL™/PUR foam/EVAL™/tie/PEX
outside inside

Vacuum insulation panels
Film/Film/EVAL™ film/sealant
outside inside

Durable and stain-resistant wallpaper
EVAL™ film/PVC/paper
outside inside

Fuel tanks, lines and filler pipes
PE/tie/EVAL™/tie/PE
outside inside

Applications in Agriculture

Fewer chemical emissions, less waste of farm produce

TIF much films
PE/PE/tie/EVAL™/tie/PE/PE
outside inside

Chemical and solvent resistant bottles
PE/tie/EVAL™
outside inside

Barrier IBC
PE/tie/EVAL™/tie/PE
outside inside
Open innovation

Application development with the world’s barrier experts

Kuraray is a world leader in specialty chemicals and functional materials. We are committed to developing products that ensure quality and value while helping our business partners differentiate themselves from their competition.

Kuraray Co. Ltd. was the first company in the world to produce and commercialise EVOH, starting in Okayama, Japan in 1972. Today Kuraray is the world’s largest producer of Vinyl Acetate Monomer derivatives, and is still the leader in EVOH technology, production, structure analysis and technical development.

EVAL™ production began in Houston, USA in 1986, and in Antwerp, Belgium in 1999. Technical centres were established in Kurashiki, Japan, at the Houston and Antwerp production sites, and in Singapore. At each site we work together with converters and end users, bringing our expertise in barrier technology and structure optimisation.

To learn more about our open innovation development, visit our global website www.evalevoh.com
Regional contacts

KURARAY CO., LTD.
EVAL Division Resin Sales Department
1-1-3, Otemachi, Chiyoda-ku, Tokyo 100-8115 Japan
Tel.: +81-3-6701-1489
Fax: +81-3-6701-1476
Film Sales Department

Tokyo
1-1-3, Otemachi, Chiyoda-ku,
Tokyo 100-8115 Japan
Tel.: +81-3-6701-2023
Fax: +81-3-6701-1476

Osaka
Umeda Hankyu Building Office Tower,
8-1, Kakudacho, Kita-ku, Osaka 530-8611, Japan
Tel.: +81-6-7635-1772
Fax: +81-6-7635-1307

KURARAY ASIA PACIFIC PTE. LTD.
331 North Bridge Road, #18-02 Odeon Towers, Singapore 188720
Tel.: +65-6337-0116
Fax: +65-6337-1912

KURARAY (THAILAND) CO., LTD.
17th Floor, Unit 1704, Sathorn Square Office Tower,
98 North Sathorn Road, Silom, Bangrak, Bangkok 10500, Thailand
Tel.: +66-2-108-2118
Fax: +66-2-108-2024

KURARAY (SHANGHAI) CO., LTD.
Unit 2207, 2 Grand Gateway,
3 Hongqiao Road, Xu Hui District, Shanghai, China: 200030
Tel.: +86-21-6119-8111
Fax: +86-21-6119-8585

KURARAY INDIA PRIVATE LIMITED
207B, Rectangle-1, D-4, District Centre, Saket, New Delhi,
110017, India
Tel.: +91-11-4610-2900
Fax: +91-11-4610-2911

KURARAY TRADING CO., LTD. (KOREA)
11F Press Center, 124Sejong-daero,
Jung-gu, Seoul, 100-745, Korea
Tel.: +82-2-732-5637
Fax: +82-2-732-5639

E-mail: eval.jp@kuraray.com
Website: www.evalevoh.com

NOTICE
The information, specifications, procedures, methods and recommendations herein are presented in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. No representation, guarantee or warranty is made as to the completeness of said information, specifications, procedures, methods and recommendations or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe patents of others or give desired results. Readers are cautioned to satisfy themselves as to the suitability of said information, specifications, procedures, methods and recommendations for the purpose intended prior to use.